Sr No.	PhD Electronics & Communication Engineering
	Which fraction comes next in the sequence
	·
	$\frac{1}{2}, \frac{3}{4}, \frac{5}{8}, \frac{7}{16}, \frac{7}{16}$?
Alt1	9/32
	10/17
	11/34
Alt4	12/35
_	
2	Choose the missing term out of the given options:
41.4	Accabbacaabaacac
	aacb
	acbc
	babb bcbb
AII4	DCDD
3	Leaf is related to Sap in the same way as Bone is related?
	Fluid
Alt2	Blood
Alt3	Marrow
Alt4	Calcium
4	Select the lettered pair that has the same relationship as the original pair of words: Rotate: Gyrate
Alt1	Putrefy: Reject
Alt2	Anachronism: Cubism
Alt3	Accolade: Criticism
Alt4	Absolve: Exonerate
5	Choose the alternative, which is similar to the given words: Liver: Heart: Kidney
Alt1	Blood
Alt2	Nose
Alt3	Lung
Alt4	Urine
	Coat the defeative assument from the fallowing.
	Spot the defective segment from the following:
	The more you read the more will you
	get to know
	about more things
AIL4	about more timiga

7	Choose the meaning of the idiom/phrase from among the options given:
'	A rainy day
Δl+1	a holiday
	a difficult time
L	a fine day
	a wet day
Alt4	a wet day
	The villagers plan to the elections in protest.
	avoid
	ignore
-	neglect
Alt4	boycott
9	Choose the option closest in meaning to the given word:
	PUERILE
	vulgar
	perverse
	childish
Alt4	young
10	Choose the antonymous option you consider the best:
	OBTUSE
Alt1	
	sharp
-	reliable
Alt4	lucid
11	In a Cricket tournament, each of the six teams will play every other term exactly once during the league
	phase. How many matches will be played during the league phase in total?
Alt1	12
Alt2	36
Alt3	15
Alt4	24
12	A walks 10 metres in front and 10 metres to the right. The every time turning to his left, he waks 5, 15 and 15
	metres respectively. How far is he now from the starting point?
Alt1	15 metres
Alt2	5 metres
Alt3	10 metres
Alt4	30 metres
	_
13	The sum of the income of A and B is more than that of C and D taken together. The sum of the income of A and
	C is the same as that of b and D taken together. Moreover, A earns half as much as the sum of the income of b
	and D. Whose income is he highest?
Alt1	
Alt2	

Alt3	С
Alt4	D
14	Five boys A, B, C, D and E are seated on a bench. A is to the left of C. b is to the immediate right of D and there
	are two people between C and D. E is to the extreme right of the row. Who is exactly at the middle of this group
	?
Alt1	A
Alt2	В
Alt3	С
Alt4	E
15	A man is facing south. He turns 1350 in the anticlockwise direction and then 1800 in the clockwise direction.
	Which direction is he facing now?
Alt1	North East
Alt2	North West
Alt3	South East
Alt4	South West
	Find the number which when added to itself 17 times becomes 126.
Alt1	
Alt2	
Alt3	
Alt4	18
	Ravi is exactly 9999 days old today. How old is he?
Alt1	
Alt2	
Alt3	
Alt4	29
	A Maths teacher usually has 21 students in his class. A,B & C are asleep. D&E are in the bathroom and the
	teacher has sent F&G to the principal's office. How many students are left in the classroom?
Alt1	
Alt2	
Alt3	
Alt4	1/
10	HDMED :- and ad an E004.43.
19	JIPMER is coded as 589142;
	AIPMT is coded as 78910;
Alt1	Then JEE is coded as
Alt1	
Alt2	
Alt3	
AIL4	714

20	Mr. Arvind drove 90 km at 30 kmph and then an additional 90 km at 45 kmph. What is his average speed over
	his 180 km ?
Alt1	37.5 kmph
Alt2	35 kmph
Alt3	36 kmph
Alt ²	38 kmph

21	The voltage gain of an emitter follower is
Alt1	10 dB
Alt2	1 dB
Alt3	infinity
Alt4	0 dB

22	The efficiency of a circuit at maximum power transfer is
Alt1	0.5
Alt2	0.75
Alt3	1
Alt4	0.25

23	If a unit step response of a system is ($1 - e$ a t), then its unit impulse response will be
Alt1	ae-at
Alt2	ae-t/a
Alt3	1/(aeat)
Alt4	(1 - a) e - a t

24	The discrete impulse function is defined by
Alt1	$\delta(n) = 1, n \ge 0$ = 0, n \neq 1
Alt2	$\delta(n)=1, n=0$ = 0, n \neq 1
Alt3	$\delta(n) = 1, n \le 0$ = 0, n \neq 1
Alt4	$\delta(n) = 1, n \le 0$ = 0, n \ge 1

25	Decimation is a process in which the sampling rate is
Alt1	enhanced
Alt2	stable
Alt3	reduced
Alt4	unpredictable

26	Let x1(t) and x2(t) be periodic signals with fundamental periods T1 and T2 respectively. Then the fundamental
	period of $x(t)=x1(t)+x2(t)$ is:
Alt1	LCM of T1 and T2

Alt2	HCF of T1and T2
Alt3	Product of T1 and T2
Alt4	Ratio of T1 to T2
27	The Cooley–Tukey algorithm of FFT is a
	Divide and conquer algorithm
	Divide and rule algorithm
	Split and rule algorithm
AIL4	Split and combine algorithm
20	For a greature from this of 11/a) to be stable
	For a system function H(s) to be stable
	The zeros lie in left half of the s plane
	The zeros lie in right half of the s plane
	The poles lie in left half of the s plane
Alt4	The poles lie in right half of the s plane
	A MOS transistor which has conducting channel region at zero gate bias is called
Alt1	Depletion mode
Alt2	Enhancement mode
Alt3	Saturated mode
Alt4	Non- saturated mode
30	In the VLSI design the data and control signals of a shift register flow in
	horizontally and vertically
	vertically and horizontally
	both horizontally
	both vertically
7.11.0.1	
31	DRAM has a and SRAM is
	smaller layout and uses large power ; slower, uses more power and is larger
	smaller layout and uses less power; faster, uses more power and is larger
	more power and slower; faster, uses less power and is smaller
Alt4	more power and faster; faster, uses less power and is larger
22	The formula of an IC estillator is nO. The whole of the constitution of the constituti
	The frequency of an LC oscillator is ω0. The plates of the parallel plate capacitor are
	2ω0 /κ
	(2/κ)1/2 ω0
	(κ/2)1/2 ω0
Alt4	κω0/2
	Consider a solenoid with radius R and length L (R << L). The magnetic field at the center
Alt1	B0/4
Alt2	B0/2
Alt3	4 BO
Alt4	2 BO

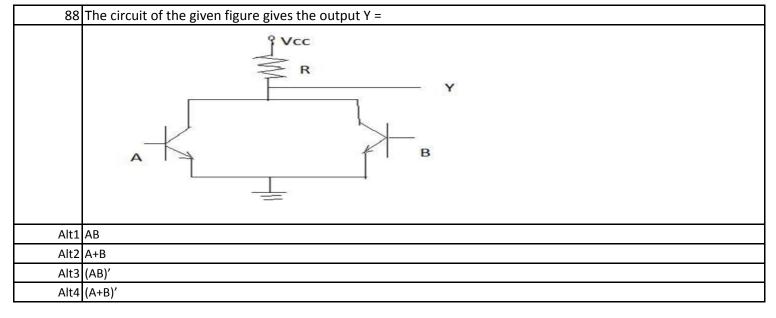
Alt1	$Ex = E0 \sin(wt + bz), Hx = H0 \sin(wt - bz)$
Alt2	$Ez = E0 \sin(wt - bz), Hy = H0 \sin(wt + bz)$
Alt3	$Ex = E0 \sin(wt + bz), Hy = H0 \sin(wt + bz)$
-	$Ey = E0 \sin(wt - bz), Hy = H0 \sin(wt - bz)$
35	110012 -100012 =
	10000
	01000
<u> </u>	00100
	00001
7.110	
36	In a shift register, right shifting a bit by one position means
	division by 2
-	multiplication by 2
	subtraction by 2
AIL4	addition by 2
27	LIDIC and LIC and account of the adoute at the
-	HDLC and LLC are examples of standards at the
	Physical layer
-	Data link layer
-	Network layer
Alt4	Transport layer
	Rayleigh fading occurs in a wireless channel when there is,
	A LOS component present
	No LOS component present
Alt3	Intercell interference
Alt4	Noise in the channel
-	
39	If the maximum Doppler frequency is 20Hz, the maximum velocity of a mobile for the
Alt1	6.67 m/s
Alt2	66.7 cm/s
Alt3	66.7 m/s
Alt4	6.67 cm/s
40	The significant amounts of signal-processing power required by the use of equalizers
	CDMA systems
	TDMA systems
Alt3	OFDM systems
Alt4	FDMA systems
41	The antenna suitable for high gain wideband application is
	folded dipole antenna
	helical antenna
	crossed dipole antenna
	log-periodic antenna
7 110-7	1-0 F-11-21-2-11-2-11-2-11-2-11-2-11-2-11-2

42	The Standard Single Mode fibers have zero chromatic dispersion at
Alt1	850 nm
Alt2	1300 nm
Alt3	1480 nm
Alt4	1550 nm
	The von Neumann bottleneck is due to
	mismatch in speed between secondary and primary storage
	mismatch in speed between the CPU and primary storage
	slow speed of I/O devices
Alt4	low clock speeds
4.4	DISC machines tunically
	RISC machines typically
	have high capacity on-chip cache memories
	have fewer registers than CISC machines
	are less reliable than CISC machines
Alt4	execute 1 instruction per clock cycle
45	Three amplifiers {A1, A2, A3} have gains of {5, 10, 3} dB respectively. Their
Alt1	
Alt2	
Alt3	
	Cannot be determined
7.11.1	
46	The Euclidean distance between the two signals defined by (E/2T)1/2 Cos(2pft) and
	(E/T)1/2
	(E/2)1/2
	(2E)1/2
	2(E)1/2
47	Given IP address 101.27.51.122 and subnet mask 255.255.128.0, the subnet address is,
Alt1	101.0.0.0
Alt2	101.27.0.0
Alt3	101.27.51.0
Alt4	101.27.51.128
	The use of an PIN photodiode detector as compared to an APD in a fiber optic receiver
	Increased Sensitivity and Increased Bandwidth
	Increased Sensitivity and Decreased Bandwidth
	Decreased Sensitivity and Increased Bandwidth
Alt4	Decreased Sensitivity and Decreased Bandwidth
40	If a watering called a witting of the with a allocated within the watering.
	If a return echo arrives after the allocated pulse interval,
	it will interfere with the operation of the transmitter
	the receiver might be overloaded
	it will not be received
ΛI+ <i>1</i>	the target will appear closer than it really is

	If the antenna diameter in a radar system is increased by a factor of 4, the maximum
Alt1	√2
Alt2	2
Alt3	4
Alt4	8
'	
51	If a single mode fiber with dispersion magnitude of 16 ps/nm.km, is used for light
Alt1	
	8 ns
Alt3	16 ps
-	16 ns
7.101	
52	The pump wavelength that should be used in an Erbium Doped Fiber Amplifier for
	1330 nm
	980 nm
	1480 nm
Alt4	1550 nm
_	A cellular system with total band width of 40MHz, has to provide cellular service with 2
Alt1	
Alt2	250
Alt3	500
Alt4	750
54	If the symbol duration is 1 ms, and one of the frequencies used in the Minimum Shift
Alt1	200.50 MHz
Alt2	201.00 MHz
Alt3	250.00 MHz
Alt4	400.00 MHz
ļ	
55	Early-late synchronizer utilizes, to synchronize the receiver.
	convolution
	correlation
	differentiation
-	accumulation
Alt4	accumulation
F.C	Which of the following devices translates hostnames into ID addresses?
	Which of the following devices translates hostnames into IP addresses?
-	DNS Server
Alt2	Hub
	DHCP Server
Alt4	Firewall
	In PPP, is a three-way-hand-shaking authentication protocol in which the
Alt1	NCP
Alt2	LCP
Alt3	СНАР

Alt4	PAP
•	
58	L-match is used for
Alt1	noise matching
Alt2	impedance matching
	both
Alt4	none of these
<u> </u>	
59	The capacity of MIMO system is directly proportional to
	Maximum number of transmit and receive antennas
	Minimum number of transmit and receive antennas
	Product of number of transmit and receive antennas
	Ratio of number of transmit and receive antennas
Alt	Tatio of Hamber of transmit and receive untermas
60	The symbol transmitted by Alamouti code in 2x1 MIMO system by the second antenna in
	symbol 1
	symbol 2
	-complex conjugate of symbol 2
Alt4	complex conjugate of symbol 1
64	
	The mapping of irregular combinational logic functions into regular structures is
	FPGA
	CPCD
-	standard cells
Alt4	PLA
	Histogram equalization make image intensity changes
Alt1	
Alt2	
	visible
Alt4	invisible
63	Decomposing image into band limit components is called
Alt1	low coding
Alt2	high coding
Alt3	intense coding
Alt4	subband coding
64	Haar transformation is defined by
	T = HFHT
Alt2	T = HFH
	T = HFT
-	T = HT
65	Convolution in spatial domain is multiplication in
	frequency domain
Alt1	
AILZ	time domain

Alt3	spatial domain
Alt4	plane
66	Advanced Encryption Standard (AES), has three different configurations with respect to
Alt1	Data Size
Alt2	Round Size
Alt3	Key Size
Alt4	Encryption Size
67	The signal to quantisation noise ratio in PCM system depends upon
	Sampling rate
	Number of quantisation level
	Message signal bandwidth
	Signal power
7.110	
68	For a modulation co-efficient of 0.4 and carrier power of 400W, the total sideband power will be
	432W
	32W
	160W
Alt4	100W
69	The resonant frequency of RF amplifier of a receiver is 1 MHz and its bandwidth is 10 KHz. The Q factor will be
Alt1	50
Alt2	100
Alt3	
Alt4	
70	The probabilities of the five possible outcomes of an experiment are given as $P(x1)=1/2$, $P(x2)=1/4$, $P(x3)=1/8$, $P(x4)=P(x5)=1/16$. The rate of information R will be
Alt1	30 bits /sec
	15 bits/sec
	45 bits/sec
	10 bits/sec
71	A 20 m antenna gives a certain uplink gain at frequency of 4/6 GHz. For getting same gain in the 20/30 GHz band, antenna size in meter will be
Alt1	100
Alt2	4
Alt3	1
Alt4	10
72	The minimum number of NAND gates required to design Ex-OR gate will be
Alt1	
Alt2	
Alt3	
AILS	J

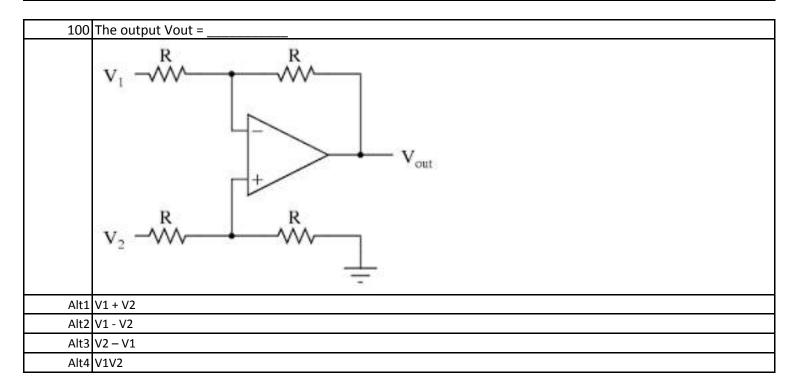

Alt4	2
73	8255A is a
	Programmable peripheral interface
	I/O device
	Memory chip
	Timer Device
7.110.1	
74	An energy signal has G (f) = 10. Its energy density spectrum is
Alt1	
Alt2	
Alt3	
Alt3	
Alt4	20
75	Which and is discrete time periodic signal
/5	Which one is discrete time periodic signal
Alt1	Sin√3πn
Alt2	$\cos \sqrt{2\pi n}$
	COS VERM
A 11 2	C: 2
Alt3	Sin3 πn
Alt4	All
	If f(t) is volts, then F(jω) is in
Alt1	Volts
Alt2	Volt seconds
Alt3	Volts/sec
Alt4	Volt-sec2
77	If the system transfer function of a discrete time system $H(z) = z/(z-1)$ then system is
Alt1	Stable
Alt2	Unstable
Alt3	Stable at z=1
Alt4	Unstable at z=1
78	A RC snubber circuit is used to protect a SCR against
	False triggering
	Failure to turn on
	Switching transient
	Failure to commutate
7 110-1	
70	A DC-AC power converter is called
	Cyclo-converter
HILL	- Cyclo-converter

Alt2	Rectifier
Alt3	Inverter
Alt4	Chopper
80	In a single phase semi converter the number of SCR is
Alt1	16
Alt2	8
Alt3	4
Alt4	2
81	In a single phase full wave controlled rectifier using centre tap transformer, the voltage across each half of
	secondary is Vmsinωt. The peak inverse voltage is
Alt1	2Vm
Alt2	Vm
Alt3	0.5Vm
Alt4	0.25Vm
82	The total number of leads in SCR, DIAC and TRIAC respectively are
Alt1	3,2,3
Alt2	2,3,3
Alt3	3,3,2
Alt4	3,2,4
83	In a three phase bridge inverter, the gating signals for three phase have a phase difference of
Alt1	120°
Alt2	60°
Alt3	240°
Alt4	90°
84	Four 1 ohm resistances are used as arms to form a square. The diagonal resistances between two corner will be
Alt1	Λ
Alt1	4 🕰
Alt1	
Alt1	
	4 Ω 2 Ω
	2 1
	2 🕰
Alt2	
Alt2	2 <u>\O</u> 1 <u>\O</u>
Alt2	2 <u>\O</u> 1 <u>\O</u>
Alt2	2 🕰

85	As a result of reflection from a plane conducting wall, electronic magnetic waves acquire an apparent velocity
	greater than velocity of light in space. This is called
Alt1	Velocity of propagation
Alt2	Normal velocity
Alt3	Group velocity
Alt4	Phase velocity

86	A 4 input AND gate is equivalent to
Alt1	4 switches in parallel
Alt2	2 switches in series and 2 in parallel
Alt3	3 switches in parallel and one in series
Alt4	4 switches in series

87	1's complement of binary number 0101 is
Alt1	1010
Alt2	1110
Alt3	1
Alt4	1111


89	An instrumentation amplifier has a high
Alt1	Output impedance
Alt2	Power gain
Alt3	CMRR
Alt4	Supply voltage

90	The maximum efficiency of a push pull class B power amplifier is
Alt1	0.4
Alt2	0.5
Alt3	0.785
Alt4	0.25

	A varactor diode is operated under
Alt1	Reverse bias
Alt2	Forward bias
Alt3	Without bias
Alt4	Zero bias
92	How many flags are there in 8085 microprocessor
Alt1	
Alt2	
Alt3	
Alt4	
AIL4	0
93	A microcomputer has a 64K memory what is the hexadecimal notation for the first memory location
Alt1	0000
Alt2	FFFF
Alt3	OFFF
Alt4	3FFF
94	The number of select lines in a 8:1 MUX are
Alt1	4
Alt2	3
Alt3	
Alt4	
95	Commonly used mode for 3G networks is
	TDMA
	FDMA
Alt3	
Alt4	
Alt	
06	Half duplex system for communication has
	Communication in single direction
	Communication in single direction at a time Communication in both directions at the same time
Alt4	Communication at selective frequency
07	The process of transferring a mobile station from one base station to another is
	MSC
	Roamer Hand off
	Hand off
AIT4	Forward channel
00	When a been of light trough through modic of the different densities if the seals of incidence is controlled
98	, , ,
	the critical angle , occurs
Alt1	Reflection

Alt2	Refraction
Alt3	Both (a) and (b)
Alt4	Criticism

	Consider an ideal n channel MOSFET with parameter L=1.25 m, $n = 650cm2/v-s$, $Cox = 6.9x10-8 F/cm2$ and $Vth = 0.65 v$. The channel width W at ID(sat) = 4mA for VG = 5V will be
Alt1	0.18 m
Alt2	10 m
Alt3	11.8 m
Alt4	10.5 m

